
UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE
UNIVERSIDADE FEDERAL RURAL DO SEMIÁRIDO

PROGRAMA DE PÓSGRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Lázaro Ribeiro Monteiro Júnior

AntiAliasing Method Based on Rotated Spatial
Filtering

Mossoró, RN

2021

Lázaro Ribeiro Monteiro Júnior

AntiAliasing Method Based on Rotated Spatial Filtering

Thesis submitted in partial fulfillment of
the requirements for the degree of Master
of Computer Science in the Programa de
PósGraduação em Ciência da Computação at
UERN/UFERSA.

Advisor: Sílvio Roberto Fernandes de Araújo,
Prof. Dr.
CoAdvisor: Leandro Carlos de Souza, Prof. Dr.

Mossoró, RN

2021

© Todos os direitos estão reservados a Universidade Federal Rural do Semi-Árido. O conteúdo desta obra é de inteira
responsabilidade do (a) autor (a), sendo o mesmo, passível de sanções administrativas ou penais, caso sejam infringidas as leis
que regulamentam a Propriedade Intelectual, respectivamente, Patentes: Lei n° 9.279/1996 e Direitos Autorais: Lei n°
9.610/1998. O conteúdo desta obra tomar-se-á de domínio público após a data de defesa e homologação da sua respectiva
ata. A mesma poderá servir de base literária para novas pesquisas, desde que a obra e seu (a) respectivo (a) autor (a)
sejam devidamente citados e mencionados os seus créditos bibliográficos.

O serviço de Geração Automática de Ficha Catalográfica para Trabalhos de Conclusão de Curso (TCC´s) foi desenvolvido pelo Instituto
de Ciências Matemáticas e de Computação da Universidade de São Paulo (USP) e gentilmente cedido para o Sistema de Bibliotecas
da Universidade Federal Rural do Semi-Árido (SISBI-UFERSA), sendo customizado pela Superintendência de Tecnologia da Informação
e Comunicação (SUTIC) sob orientação dos bibliotecários da instituição para ser adaptado às necessidades dos alunos dos Cursos de
Graduação e Programas de Pós-Graduação da Universidade.

M772a Monteiro Júnior, Lázaro Ribeiro.
 Anti-Aliasing Method Based on Rotated Spatial
Filtering / Lázaro Ribeiro Monteiro Júnior. -
2021.
 73 f. : il.

 Orientador: Sílvio Roberto Fernandes de Araújo.
 Coorientador: Leandro Carlos de Souza.
 Dissertação (Mestrado) - Universidade Federal
Rural do Semi-árido, Programa de Pós-graduação em
Ciência da Computação, 2021.

 1. Computação Gráfica. 2. Anti--Aliasing. 3.
Filtragem Espacial. 4. Regressão Linear. I.
Araújo, Sílvio Roberto Fernandes de, orient. II.
Souza, Leandro Carlos de, co-orient. III. Título.

Lázaro Ribeiro Monteiro Júnior

AntiAliasing Method Based on Rotated Spatial Filtering

Thesis submitted in partial fulfillment of the
requirements for the degree of Master of
Computer Science in the Programa de Pós
Graduação em Ciência da Computação at
UERN/UFERSA.

Thesis approved in August 31, 2021:

Sílvio Roberto Fernandes de Araújo, Prof. Dr.
Advisor UFERSA

Leandro Carlos de Souza, Prof. Dr.
CoAdvisor UFPB

Angélica Félix de Castro, Profa. Dra.
Internal Examiner UFERSA

Renata Maria Cardoso Rodrigues de Souza,
Profa. Dra.

External Examiner UFPE

Mossoró, RN
2021

“Everything is important that
success is in the details.”

(Steve Jobs)

Abstract
Due to the evolution of graphics processors over the last decades has become possible to pro
duce highquality and realistic threedimensional scenes. However, aliasing is produced during
the sampling performed in the rasterization process. It causes a serrated effect on the edges of
the objects presented in the scene, highlighting the unreal aspect of the image and displeasing
the viewer. The present thesis aims to develop an antialiasing treatment based on rotated spatial
filtering. It performs edges recognition applying spatial filtering along with simple linear regres
sion technique. Then, a smoothing spatial filter is rotated to match the direction of the inspected
border and applied in the affected regions. The testing was performed on an OpenGL applica
tion, processing the rendered image from the framebuffer. Later, the application was modified
to process images from Blender, a 3D modeling software that allows more complex graphics
scenes. The results show the proposed method’s effectiveness in smoothing aliasing with good
quality and preserving the scene details. Hence, the problem was handled effectively with a post
filtering approach and without oversampling. The algorithm’s execution time is O(n), and the
memory used is O(n).

Keywords: Computer Graphics. AntiAliasing. Spatial Filtering. Linear Regression.

Resumo
Com a constante evolução dos processadores gráficos ao longo das últimas décadas, tornouse
possível produzir cenas tridimensionais com alta qualidade e realismo. No entanto, o aliasing é
um problema produzido durante a amostragem de sinais realizada no processo de rasterização.
Ele causa um efeito serrilhado nas bordas dos objetos apresentados em cena, ressaltando o as
pecto irreal da imagem e causando desconforto visual ao espectador. O presente estudo busca
desenvolver um tratamento antialiasing baseado em filtragem espacial rotacionada. O método
proposto identifica as bordas na cena utilizando filtragem espacial junto a regressão linear sim
ples. Então, um filtro espacial de suavização é rotacionado na mesma direção da borda inspeci
onada e aplicado nas regiões afetadas. Os testes foram realizados em uma aplicação OpenGL,
processando a imagem renderizada do framebuffer. Posteriormente, a aplicação foi modificada
para processar imagens do Blender, um software de modelagem 3D que permite a produção
de cenas mais complexas. Os resultados mostram a eficácia do método ao suavizar o aliasing
com boa qualidade e preservando os detalhes da cena. Desta forma, o problema foi tratado de
forma eficaz com abordagem pósfiltragem e sem superamostragem. O tempo de execução do
algoritmo é O(n), assim como seu consumo de memória é O(n).

Palavraschave: Computação Gráfica. AntiAliasing. Filtragem Espacial. Regressão Linear.

List of Figures

1.1 Example of MSAA treatment. 13
2.1 Example of grayscale conversion using YIQ color system. 17
2.2 Mechanics of spatial filtering using a 3× 3 filter mask. 18
2.3 Average filter mask 3× 3 . 19
2.4 Average filter. 19
2.5 Gaussian filter mask 5× 5 . 20
2.6 Gaussian blur filter. 20
2.7 (a) Filter mask implementing Laplace operators, (b) Filter mask implementing

an extension of Laplace operators including diagonal terms. 21
2.8 Filter masks implementing Roberts gradient. 21
2.9 Filter masks implementing Sobel gradient. 21
2.10 Sobel gradient. 22
2.11 Scatter plot demonstrating the relationship between two variable. The line rep

resents the fitted linear function. 23
2.12 Scatter plot of shear strength versus propellant age. 25
3.1 Grayscale conversion example on an image containing randomgeometric shapes

created with OpenGL. 33
3.2 Sharpening filtering example with Sobel gradient applied on the grayscale image. 33
3.3 Threshold applied on the filtered image with sharpening filter. 34
3.4 The red line represents the estimated slope angle of the pixel marked with the

red dot. The estimate is based on the square patch shown in (b). 35
3.5 Patch of pixels zi,j used to estimate its direction. wi and hi are the means from

each column and line, respectively. 35
3.6 Rotation mechanics with a filter mask 3× 3 38
3.7 Use of bilinear interpolation to estimate the center dot intensity based on the

four nearest pixels. 39
3.8 (a) Original image (b) Image treated with REPAIR antialiasing (c) Zoom in the

original image (d) Zoom in the treated image. 40
3.9 Comparison between two images treated with non rotated and rotated spatial

filtering. 41
3.10 Algorithm’s workflow. 42
4.1 Comparison between different smoothing filter masks. 47
4.2 Comparison between different threshold weights κ. 48
4.3 Heatmap representing the direction of the objects edges. As the slope angle is

closer 90°, more close to red the pixel is plotted. 50
4.4 Armadillo 3D model from Stanford University (2014). 51

4.5 Stanford bunny 3D model from Stanford University (2014). 52
4.6 Dragon 3D model from Stanford University (2014). 54
4.7 Axe 3D model from BlenderKit (2017). 56
4.8 Cherry tree 3D model from BlenderKit (2017) in panoramic view. 57
4.9 Cherry tree 3D model from BlenderKit (2017) in close up view. 59
4.10 Bedside table 3D model from BlenderKit (2017). 60
4.11 Flower in a vase 3D model from BlenderKit (2017). 62
4.12 Palm tree 3D model from BlenderKit (2017) in panoramic view. 63
4.13 Palm tree 3D model from BlenderKit (2017) in close up view. 65
4.14 Saint Charles facade 3D model from BlenderKit (2017) 66
4.15 Vintage Fiat 500 3D model form BlenderKit (2017) 68
4.16 Blender 2.91 demo 3D model from Blender Foundation (2020b) 69

List of Tables

2.1 Data for rock propellant data. 24
3.1 Pairs of data to the linear regression model construction. 36

List of abbreviations and acronyms

3D threedimensional

AA Adaptive AntiAliasing

ACAA Accumulative AntiAliasing

AGAA Aggregate GBuffer AntiAliasing

API Application Programming Interface

CAD ComputerAided Design

CPU Central Processing Unit

CSAA Coverage Sampling AntiAliasing

DCAA Decoupled Coverage AntiAliasing

DEAA DistancetoEdge AntiAliasing

DLAA Directionally Localized AntiAliasing

FPGA Field Programmable Gate Array

FXAA Fast ApproXimate AntiAliasing

GBAA Geometry Buffer AntiAliasing

GPAA Geometric PostProcess AntiAliasing

GPU Graphics Processing Unit

LSI Linear ShiftInvariant

MLAA Morphological AntiAliasing

MR Magnetic Resonance

MSAA Multisample AntiAliasing

NURBS NonUniform Rational BSplines

REPAIR Rotated Spatial Filtering

SBAA Surface Based AntiAliasing

SMSAA Selective MultiSample AntiAliasing

SNS Signal to Noise Ratio

SRAA Subpixel Reconstruction AntiAliasing

SSAA Supersampled AntiAliasing

Contents

1 INTRODUCTION . 12
1.1 Objectives . 13
1.2 Research Methodology . 14
1.3 Outline . 14

2 THEORY . 16
2.1 YIQ Color System . 16
2.2 Spatial Filtering . 17
2.3 Simple Linear Regression . 22
2.4 Related Work . 25
2.4.1 Real Time AntiAliasing . 29
2.4.2 Conclusion . 30

3 REPAIR: AN ANTIALIASING METHOD 32
3.1 Image Processing . 32
3.2 Statistics . 33
3.3 Mask Rotation . 37
3.4 Asymptotic Analysis . 41
3.5 Algorithms . 43

4 RESULTS AND DISCUSSIONS . 47
4.1 Stanforfd 3D Scanning Repository . 50
4.2 BlenderKit . 55
4.3 Blender Demo . 69

5 CONCLUSION . 71
5.1 Future Work . 72

BIBLIOGRAPHY . 73

12

1 INTRODUCTION

Computer graphics is the science and art of visual communication through a screen and
its interactive devices. It is a multidisciplinary knowledge field involving physics, math, human
machine interaction, engineering, graphics design, and mainly human perception (HUGHES et
al., 2014).

An enormous advance in dedicated hardware to threedimensional (3D) graphics pro
cessing happened in the last decades. In the earlier 1980s, Graphics Processing Units (GPUs)
were large and expensive systems. Over the decades, these devices became small and their prices
accessible, integrating workstations and laptops easily. Currently, GPUs are capable of execut
ing trillions of float point operations per second (teraflops). Simultaneously, the development
techniques also evolved and became more sophisticated (KIRK; HWU, 2013).

Nowadays, computer graphics allows the rendering of highquality images. Also, digi
tal media applies it in animation movies, games, simulations, and medical images, for example.
New hardware devices have high performance making it possible to produce images using stan
dard devices, like personal computers and smartphones (HUGHES et al., 2014).

Although, the presentation of digital images has a quality limitation, denominated alias
ing. This problem occurs during the raster process, which tries to draw the colors of the image on
discrete integer coordinates of the screen. These discrete areas are called pixels, and the image
has limited resolution (HEARN; BAKER, 1997). Thus, it is inevitable that information is lost
during the discretization process (GONZALEZ; WOODS, 2008)

In the viewer’s perspective, the aliasing is a distortion of the scene information that
makes lines and other graphics primitives look jagged, with a stairstep appearance (HEARN;
BAKER, 1997). It disturbs mainly objects edges and it seems that affected objects are unrealistic
and separated from the scene (HUGHES et al., 2014).

Even though aliasing is an unavoidable problem in scenes presentation, its effects can
be reduced using methods to improve the appearance of displayed graphic primitives (HEARN;
BAKER, 1997). These methods are called antialiasing (GONZALEZ;WOODS, 2009) and they
are classified into three techniques: postfiltering, prefiltering, and pixel phasing.

The postfiltering techniques are applied to rendered images. Usually needs a super
sampled image and reduces its resolution to display on the screen; The prefiltering techniques
perform during the render process and usually compute overlap areas to determine object bound
aries, where aliasing is more likely to appear. Pixel phasing techniques execute antialiasing by
shifting the display location of pixel areas (HEARN; BAKER, 1997).

In literature, there is a variety ofAntiAliasingmethods. The SupersampledAntiAliasing

Chapter 1. INTRODUCTION 13

(SSAA) computes multiple samples independently for each pixel and the final result is resolved
by averaging all samples. Thus, SSAA increases the sampling rate, increasing the computing
effort to render the scene. The ABuffer renderer computes, at each sample, the color for a frag
ment of a pixel, storing a list of fragments for each pixel. The pixel color is made up from a
group of fragments, which allows a more accurate measurement of coverage and aliasing reduc
tion. Although, the memory consumption is increased to store one extra buffer. Multisample
AntiAliasing (MSAA) is similar to SSAA, but it applies a depth test to oversample only edge
regions, reducing SSAA drawbacks. Although, it only reduces aliasing on geometry edges and
may leave aliased regions untreated. An example of MSAA is shown in Figure 1.1. The Cover
age Sampling AntiAliasing (CSAA) combines the strengths of the Abuffer andMSSA. It keeps
a set of highresolution samples, but instead of storing them, it stores pointers to a small set of
colors. So, it allows a more accurate estimate of the area within the pixel using less memory
than MSAA and ABuffer (HUGHES et al., 2014).

Figure 1.1 – Example of MSAA treatment.

(a) Image without antialiasing. (b) Image with MSAA.

Source: Own authoring.

1.1 Objectives

The usual antialiasing methods improve the quality of the scene. However, they have
significant drawbacks that hamper its use. Most antialiasing methods need to surpersample
the image, at least specific regions, or store auxiliary buffer(s) (HUGHES et al., 2014), which
implies high computing cost or high memory use. These drawbacks have a significant impact
on performance, particularly on realtime applications.

This research proposes a postfiltering AntiAliasing method that smooths aliasing ef
fects applying lowpass spatial filtering only in the regions where the distortion has a higher

Chapter 1. INTRODUCTION 14

tendency to occur. The algorithm identifies the object edges in the scenes through segmentation
techniques. Moreover, rotation techniques are used to match the filter mask with the detected
edge inclination, improving the smoothing quality. Regarding execution time, the method has
complexityO(n), being n the number of pixels in the image, with no additional rendering effort
to produce a highresolution image.

The Rotated Spatial Filtering (REPAIR) AntiAliasing is a postfiltering antialiasing
method that uses a rotated lowpass spatial filter to blur the edge regions where aliasing has a
higher probability to occur. Like other AntiAliasing methods, REPAIRAA aims to improve
the visual perception of digital images by smoothing aliasing effects caused by unavoidable
undersampling problems.

1.2 Research Methodology

A graphic scene displaying geometric shapes on a gradient background is built with
OpenGL to perform the tests. The rendered image is taken from OpenGL’s framebuffer since
the REPAIR antialiasing is a postfiltering technique. It is processed and then replaced in the
framebuffer to be displayed.

Blender (Blender Foundation, 2020a) is used to test the REPAIR method on more com
plex scenes, with detailed models and illumination. Blender is a free software that allows mod
eling 3D scenes easily, with a friendly user interface. The scenes are created using 3D models
available in BlenderKit (BlenderKit, 2017), a repository of 3D models for blender. BlenderKit
provides free and paid 3D models from several authors under “Royalty Free” and “CC0 No
Rights Reserved” licenses. Only free models were used in tests.

The performance is evaluated through the asymptotic analysis of execution time and
space on Section 3.4. This approach predicts the necessary resources to execute the algorithm in
dependently of hardware or compiler. Due to the scarcity of documentation of usual antialiasing
methods, it is hard to compare the proposed method with others, since antialiasing are usually
embedded in proprietary solutions.

1.3 Outline

This thesis is organized as outlined below:

• Chapter 2 reviews the critical theory to understand the method development and assesses
the related works that developed antialiasing techniques utilizing different approaches.

• Chapter 3 describes the operation of the REPAIR antialiasing, its asymptotic analysis,
and the algorithm.

• Chapter 4 presents and evaluates the obtained results.

Chapter 1. INTRODUCTION 15

• Chapter 5 presents the final considerations and proposes improvements for future works.

16

2 THEORY

This chapter presents a review of the essential theory necessary to understand themethod
development. Section 2.1 approaches theYIQ color system used to convert an image to grayscale.
Section 2.2 approaches spatial filtering, a fundamental digital image processing technique. Sec
tion 2.3 approaches simple linear regression, a statistical model used to estimate values based
on pairs of observations. Finally, Section 2.4 presents studies that developed or reviewed anti
aliasing solutions.

The proposed method aims to process a digital image with spatial filtering from digital
image processing area and linear regression from statics. Spatial filtering is one of the main tools
used in digital image processing field for a broad spectrum of applications. It is a versatile tool
because it does not need to process images in the frequency domain. Regression analysis is a
collection of statistical tools used to model relationships between two or more variables.

2.1 YIQ Color System

A color system provides a specification of a coordinate system and a subspace to rep
resent colors in single points. It specifies standards to represents images. The choice of color
system is oriented to the application or the hardware, such as monitors, printers, and TVs (GON
ZALEZ; WOODS, 2008).

The RGB color system is usually employed to represent digital images to be displayed
on the screen. It is based on a Cartesian coordinate system, and the colors are represented by its
primary components: red, green, and blue (GONZALEZ; WOODS, 2008).

The YIQ color system is used in NTSC color TV system. The Y component represents
the luma information, I and Q components represent the chrominance information. Equation
(2.1) converts an image represented in RGB to the YIQ color system.

Y = 0.299 ·R + 0.5959 ·G+ 0.2115 ·B

I = 0.587 ·R− 0.2746 ·G− 0.5227 ·B

Q = 0.114 ·R− 0.3213 ·G+ 0.3112 ·B

(2.1)

The Y component of the YIQ color system must be isolated to convert an RGB image
to grayscale since it contains information about the intensity of the pixels. The YIQ grayscale
produces good results because it takes advantage of human colorresponse characteristics, pre
serving the changes in the orangeblue range than in the purplegreen range (MATHWORKS).
The grayscale pixel of an RGB image is obtained replacing all channels of RGB system by the
Y value: R = Y , G = Y , B = Y . Figure 2.1 shows an example of grayscale conversion.

Chapter 2. THEORY 17

Figure 2.1 – Example of grayscale conversion using YIQ color system.

(a) Color image. (b) Grayscale image.

Source: Own authoring.

2.2 Spatial Filtering

Spatial filtering is one of the main tools used in digital image processing. It performs a
predefined operation on a neighborhood of the image pixels. Filtering operation creates a new
pixel, replacing the original value in the center of the neighborhood. A way to obtain a filtered
image is using correlation. This process moves a filter mask over the entire image, one pixel
at time (GONZALEZ; WOODS, 2008). The result of each step is the sum of the products. The
correlation of a filterm(w, h) of size p× q with an image f(w, h) is given by:

m(w, h) ⋆ f(w, h) =
a∑

s=−a

b∑
t=−b

m(w, h)f(w + s, h+ t) (2.2)

where a = (p − 1)/2 and b = (q − 1)/2 are the center of the filter mask. p and q are odd
integers. Using correlation or convolution to perform spatial filtering is a matter of preference
(GONZALEZ; WOODS, 2008). Figure 2.2 illustrates how a spatial filter works.

Chapter 2. THEORY 18

Figure 2.2 – Mechanics of spatial filtering using a 3× 3 filter mask.

Source: MONTGOMERY; RUNGER (2014).

Spatial filters are divided into smoothing filters (low pass filter) and sharpening filters
(high pass filter). Smoothing filters are used for blurring and noise reduction. Blurring is used
to remove small details and bridging of small gaps in lines or curves. The Gaussian blur and
average filter are examples of smoothing spatial filters. The principal objective of sharpening
is to highlight color transitions intensities. The image sharpening process is used in electronic
printing and medical imaging applications to industrial inspection and autonomous guidance in
military systems. Laplace, Roberts and Sobel gradients are examples of sharpening spatial filter
(GONZALEZ; WOODS, 2008).

The output of a smoothing filter is simply the average of the pixels in the neighborhood
delimited by the filter mask. This average can be weighted or not and these filters can be called
averaging filters. By replacing the value of every pixel in an image with the average of the
intensity levels in its neighborhood, this process results in an image with reduced sharp intensity
transitions, which have the side effect of blurring edges (GONZALEZ; WOODS, 2008).

In the average filter, each term of the mask z = 1/n, where n = p · q is the mask size.
The sum of terms are

∑n
i=1 zi = 1. The standard average of the pixels under a mask 3 × 3 is

shown in Figure 2.3. An example of average filtering is shown in Figure 2.4.

Chapter 2. THEORY 19

Figure 2.3 – Average filter mask 3× 3

Source: Own authorship.

Figure 2.4 – Average filter.

(a) Original image. (b) Filtered image.

Source: Own authoring.

The Gaussian blur mask shown in Figure 2.5 is a commonly used smoothing filter. Its
primary strategy is to weigh the terms maximizing the center point and minimizing the points
according to its distance from the center, replicating the Gaussian distribution behavior (GON
ZALEZ; WOODS, 2008). This approach adds less blur to the image. Figure 2.6 shows the uti
lization of the Gaussian blur filter.

Chapter 2. THEORY 20

Figure 2.5 – Gaussian filter mask 5× 5

Source: Own authorship.

Figure 2.6 – Gaussian blur filter.

(a) Original image. (b) Filtered image.

Source: Own authoring.

Since averaging is analogous to integration, sharpening can be accomplished by spa
tial differentiation. The strength of the response of a derivative operator is proportional to the
degree of intensity discontinuity of the image. Image differentiation enhances edges and other
discontinuities and deemphasizes areas with slowly varying intensities. Thus, sharpening filters
will produce images with grayish edge lines and other discontinuities, all on a dark, featureless
background (GONZALEZ; WOODS, 2008).

The Laplacian operator is implemented in the filter mask presented in Figure 2.7a. The
diagonal directions can be incorporated, as shown in Figure 2.7b.

Chapter 2. THEORY 21

Figure 2.7 – (a) Filter mask implementing Laplace operators, (b) Filter mask implementing an
extension of Laplace operators including diagonal terms.

(a) (b)

Source: Own authorship

The masks presented in Figures 2.8 and 2.9 show the implementation of firstorder
derivatives filters. Sobel operators use a weight value of 2 in the center coefficient to achieve
some smoothing by giving more importance to the center point (GONZALEZ; WOODS, 2008).
Figures 2.8 and 2.9 present the Roberts gradient and Sobel operators, respectively.

Figure 2.8 – Filter masks implementing Roberts gradient.

(a) (b)

Source: Own authorship.

Figure 2.9 – Filter masks implementing Sobel gradient.

(a) (b)

Source: Own authorship.

Note that the coefficients in the filter masks sum to 0, indicating that they would give
a response of 0 in an area of constant intensity. Moreover, masks of even sizes are awkward to

Chapter 2. THEORY 22

implement because they do not have a center of symmetry. The smallest filter masks of interest
have a size 3 × 3 (GONZALEZ; WOODS, 2008). Figure 2.10 shows an example of highpass
filtering with the Sobel operators.

Figure 2.10 – Sobel gradient.

(a) Grayscale image. (b) Filtered image.

Source: Own authoring.

2.3 Simple Linear Regression

Simple linear regression is a model that explores linear dependency between variables to
predict unknown or unobserved values (SOUZA, 2016). Its primary goal is to find a linear equa
tion that represents this relationship based on pairs of observations (x1, y1), (x2, y2), . . . , (xn, yn)

(MONTGOMERY; RUNGER, 2014). The observed values are used to fit the equation’s param
eters to match the observed data. Figure 2.11 shows a scatter plot where the dots are the observed
values, and the line is the fitted linear equation. The estimated values will follow the tendency
of the observed values.

Chapter 2. THEORY 23

Figure 2.11 – Scatter plot demonstrating the relationship between two variable. The line repre
sents the fitted linear function.

Source: MONTGOMERY; RUNGER (2014).

Equation (2.3) presents the linear relationship betweenx and y variables (MONTGOMERY;
PECK; VINING, 2012). The single regressor variable xi has a linear relationship with a response
variable yi. The variables x are also called independent variables and the variables y are called
dependent variables (MONTGOMERY; RUNGER, 2014; MONTGOMERY; PECK; VINING,
2012).

yi = β0 + β1xi + εi (2.3)

where the parameters β0 and β1 are called regression coefficients. β0 is the intercept and β1 is
the slope (MONTGOMERY; PECK; VINING, 2012).

Regression coefficients have unknown values and must be fitted to the observed data.
The leastsquaresmethod is used to estimate them, according to Equations (2.4) and (2.5) (MONT
GOMERY; PECK; VINING, 2012).

β̂0 = ȳ − β̂1x̄ (2.4)

β̂1 =
Sxy

Sxx

(2.5)

where Sxy =
∑n

i=1(yi − ȳ)(xi − x̄), Sxx =
∑n

i=1(xi − x̄)2, x̄ = 1
n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi.

The fitted simple linear regression model is given by Equation (2.6), which can be used to esti
mate the response for new values of the variable x.

ŷi = β̂0 + β̂1xi (2.6)

Chapter 2. THEORY 24

For example, a rocket motor is manufactured by bonding an igniter propellant and a
sustainer propellant together inside a metal housing. The shear strength of the bond between the
two propellants is an important quality characteristic. It might have a relationship between the
shear strength and the sustainer propellant’s age (in weeks) (MONTGOMERY; PECK; VINING,
2012).

Thus, twenty pairs of observations have been collected to verify this behavior, and they
are shown in Table 2.1. The shear strength is considered the dependent variable y, and the age
of the propellant is the independent variable x to model this relationship with simple linear
regression (MONTGOMERY; PECK; VINING, 2012). Figure 2.12 shows the scatter plot of the
observations.

Table 2.1 – Data for rock propellant data.

i yi xi
1 2, 158.70 15.50
2 1, 678.15 23.75
3 2, 316.00 8.00
4 2, 061.30 17.00
5 2, 207.50 5.50
6 1, 708.30 19.00
7 1, 784.70 24.00
8 2, 575.00 2.50
9 2, 357.90 7.50
10 2, 256.70 11.00
11 2, 165.20 13.00
12 2, 399.55 3.75
13 1, 779.80 25.00
14 2, 336.75 9.75
15 1, 765.30 22.00
16 2, 053.50 18.00
17 2, 414.40 6.00
18 2, 200.50 12.50
19 2, 654.20 2.00
20 1, 753.70 21.50

Source: MONTGOMERY; PECK; VINING (2012).

Chapter 2. THEORY 25

Figure 2.12 – Scatter plot of shear strength versus propellant age.

Source: MONTGOMERY; PECK; VINING (2012).

With, x̄ = 13.36 and ȳ = 2, 131.36

β̂1 =
Sxy

Sxx

=
−41, 112.65
1, 106.56

= −37.15

β̂0 = 2, 131.36− (−37.15) · 13.36 = 2, 627.82

(2.7)

The leastsquares fit is

ŷ = 2, 627.82− 37.15x (2.8)

The slope−37.15 is the average weekly decrease in propellant shear strength due to the
age of the propellant. The intercept 2, 627.82 represents the shear strength in a new batch of
propellant (MONTGOMERY; PECK; VINING, 2012).

2.4 Related Work

Several antialiasing solutions are found in the literature. Among them are the splatting
technique, selfsimilar crowdbased algorithms, approximation method, edgedirected adaptive
filters, oversampling techniques, and machine learning methods. In most cases, these solutions
seek the best visual quality of images with less memory consumption and less processing time.

Chapter 2. THEORY 26

Next, in chronological order of publication, the solutions related to the method proposed in this
work will be presented, as noting this theme continues relevant for decades.

An antialiasing technique for splatting is proposed in 1997 by (Swan II et al.), which
delivers highquality splatted images. Splatting is a popular rendering algorithm that does not
correctly render cases where the volume sampling rate is higher than the image sampling rate,
resulting in potentially severe spatial and temporal aliasing artifacts. Previous splatting algo
rithms do not have a mechanism for avoiding aliasing artifacts. The proposed mechanism has
the potential for very efficient hardware implementation.

The antialiasing algorithm suggested by (KVETNY; KOSTROVA; BOGATCH, 2001)
in 2001 uses interpolation based on selfsimilar multitudes to remove the jaggies. This approach
does not change the brightness or the colors of a magnified image. This antialiasing algorithm
was implemented in the special software for low vision people — the L&H Magnifier. The pre
liminary tests confirmed that the developed technology improves the quality of zoomed images
much better than the standard algorithms, but it needs a large number of computer operations.
So, using the antialiasing algorithm based on selfsimilar multitudes is reasonable when the
magnification level is four and higher.

The algorithm of shadowmap and its basic principles are studied in 2007 by (XIAO
LIANGI et al., 2007), which explains the cause of selfshadow and aliasing mathematically.
The paper presents a multisampling algorithm to smooth shadow and reduce aliasing by in
creasing the precision of depth information and using zbias. The algorithm is implemented by
DirectX3D. Experimental results show the feasibility of the algorithm.

In papers from 2009, it was observed that postprocessing antialiasing algorithms were
widely used for realtime rendering because of their simplicity, performance, and suitability for
deferred shading. Fast approximate antialiasing (FXAA) is the fastest method among them.
Thus, many games support FXAA to get antialiased images. However, FXAA can easily lose
texture details and text sharpness due to its excessive blurring (NAH et al., 2009).

In the same year, (IOURCHA; YANG; POMIANOWSKI, 2009) describes an adaptive
antialiasing (AA) filter for realtime rendering on the GPU, as such device provides direct
access to multisample antialiasing (MSAA) rendering data. The intelligent reconstruction filter
uses the existing pixel subsample values calculated using programmable GPU shader units. The
improved quality is achieved by using information from neighboring pixel samples to calculate
the leading edge gradient approximation and the final pixel color.

Motionbased object detection is very used nowadays, and several implementations use
linear shiftinvariant (LSI) filters. One of the most important factors falsifying object detection
results obtained using linear LS) is aliasing. Then, in (SCHAULAND; VELTEN; KUMMERT,
2010), an innovative, in 2010, antialiasing approach for motionbased object detection using
LSI is presented. The approach’s applicability is demonstrated using scenes recorded by a cam
era installed in a blindspot warning system.

Chapter 2. THEORY 27

The surface based antialiasing (SBAA) is a new approach proposed by (SALVI;VIDIMCE,
2012). SBAA is a préprocessing antialiasing technique used in conjunction with deferred ren
derers to resolve visibility of subpixel features, minimizing spatial and temporal artifacts. It is
a realtime antialiasing for deferred renderers that improves the performance and lowers the
memory requirements for antialiasing methods that sample subpixel visibility.

In 2013 (BARRINGER; AKENINEMOLLER, 2013) presented a novel algorithm that
uses shared memory between the GPU and the CPU to solve the edge aliasing problem. The
system renders the scene as usual on the GPU with one sample per pixel. At the same time, it
executes asynchronously on the CPU. First, a sparse set of important pixels is created. Then,
the CPU runs a sparse rasterizer and fragment shader, directly accessing shared resources. The
method can render a scene with shadow mapping and adaptive antialiasing with 16 samples per
important pixel faster than the GPU with 8 samples per pixel using multisampling antialiasing.

In the same year, (CRASSIN et al., 2013) presented Aggregate GBuffer AntiAliasing
(AGAA), a technique for the antialiased deferred rendering of complex geometry using modern
graphics hardware. AGAA uses the rasterization pipeline to generate a compact, prefiltered
geometric representation inside each pixel. Then, it shades this at a fixed rate, independent of
geometric complexity. By decoupling shading rate from geometric sampling rate, the algorithm
reduces the storage and bandwidth costs of a geometry buffer, allowing scaling to high visibility
sampling rates for antialiasing. AGAA with 2 aggregate surfaces per pixel generates results
comparable to 8x MSAA, requiring 30% less memory.

Accumulative antialiasing (ACAA) is a simple modification of forwardrendered multi
sample antialiasing (MSAA). ACAA stores multiple depth samples, computed by a depthonly
prepass, but stores only one color sample per pixel, which is used to accumulate final color
as the sum of shaded fragment colors weighted by visibility. ACAA makes higher sample rates
practical, improving image quality. It produces the same image quality but consumes half as
much multisample framebuffer memory and reduces both render time and offchip bandwidth
by 20% to 30% (ENDERTON et al., 2015).

The paper (WANG et al., 2015) presents Decoupled Coverage AntiAliasing (DCAA),
which improves upon MSAA by further decoupling coverage from visibility for highquality
geometric antialiasing. Since all fragments at a pixel can be consolidated into a small set of
visible surfaces, each consolidated surface is represented with a 64bit binary mask for cover
age and a single decoupled depth value, reducing the overhead for highquality antialiasing.
Surface merging heuristics and resolution mechanisms are used to manage the decoupled depth
and coverage samples. DCAA runs in realtime on current graphics hardware and significantly
reduces geometric aliasing with less memory overhead than 8×MSAA.

In 2016 (RAJARAPOLLU; MANKAR, 2016) designed and analyzed the antialiasing
methods for the rendering of graphical entities. The performance of supersampling,multisample,
andmorphological antialiasingmethodswere compared. It has been observed that supersampling

Chapter 2. THEORY 28

andmultisample give better results, although they suffer from the extra burden of computational
resources. The morphological antialiasing method has a scope to improve the performance, yet
it can yield realtime performance that can be achieved using parallelism.

An antialiasing algorithm for mobile vector graphics has been proposed by (LEE et
al., 2016). It aims to reduce sample counts by selective multisampling only for the pixels that
meet the image’s contour. The pixel block algorithm reduces the cost of the intersection test,
processing adjacent pixels together. Hierarchical sampling is used for more optimization. The
optimized SMSAA (SelectiveMultiSample AntiAliasing) is 29.4 times faster than the original
16× MSAA.

An antialiasing algorithm based on saliency map for virtual reality applications has
been introduced by (SUNG; CHOI, 2017). It first renders the whole scene into a single texture
image and feeds it into saliency map construction. The resulting saliency map is then input to
the second rendering step with the original texture image. The second rendering step performs
the antialiasing algorithm selectively based on the value of saliency map. The user study shows
that participants do not distinguish between full antialiasing and selective antialiasing based on
saliency map. The rendering time has a 510% performance increase if the selective antialiasing
is used (SUNG; CHOI, 2017).

To achieve the fast and accurate antialiasing line rendering, using the modified DDA
and Wu straight line generation algorithm, a twopixel antialiasing pointbypoint rendering
algorithm for straight lines using integer arithmetic was proposed by (LIU; LI, 2018). The al
gorithm calculates the coordinate position of the next pixel and its brightness level based on
the midpoint error value. Theoretical analysis and experiments show that the new algorithm is
simple and has good execution efficiency and antialiasing effect.

The paper (ZHAO et al., 2019) reviews the SMORE algorithm and then demonstrates
its performance in four applications to demonstrate its potential in research and clinical sce
narios. SMORE is a deep learning approach that carries antialiasing and superresolution on
Magnetic resonance (MR) images using no external atlas or exemplars. It is shown to improve
the visualization of brain white matter lesions, the visualization of scarring in cardiac left ven
tricular remodeling after myocardial infarction, multiview images of the tongue, and finally, it
improves performance in parcellation of the brain ventricular system. Both visual and selected
quantitative metrics of resolution enhancement are demonstrated.

A direct renderingmethod for trimmedNonUniformRational BSplines (NURBS)mod
els based on their parametric description is presented by (SCHOLLMEYER; FROEHLICH,
2019). NURBS are a common model representation for export, simulation, and visualization
in ComputerAided Design (CAD). The proposed approach builds a trimming method and a
threepass pipeline which allow for a subpixel precise visualization. The rendering pipeline
bypasses the tessellation limitations of current hardware using a feedback mechanism. The pro
posed method scales well with many trim curves and estimates the trimmed surface’s footprint

Chapter 2. THEORY 29

in screen space, allowing for antialiasing with minimal performance overhead. Fragments with
trimmed edges are routed into a designated offscreen buffer for subsequent blending with back
ground faces. The curve coverage estimation used for antialiasing provides an efficient trade
off between quality and performance compared to multisampling or screenspace antialiasing
approaches.

In 2020, (LUO; ZHANG, 2020) proposes an antialiasing algorithm of the #filter anti
aliasing based on subpixel continuous edges. It can solve the geometry edges aliasing and the
flicker problem in deferred shading. First, the geometry scene with multisampling antialiasing
(MSAA) is rendered to a GBuffer designed elaborately. Second, the geometry edges are de
tected on the subpixellevel. It mainly takes advantage of the Chebyshev inequality to deter
mine the edges from the probability statistic and the view frustum location. Third, the continu
ous geometry edges are reconstructed by a #filter method. Finally, the edge pixels are shaded
adaptively. The implementation demonstrates that the algorithm is efficient and scalable for
generating highquality antialiasing geometry and reducing shading calculation overhead.

2.4.1 Real Time AntiAliasing

In 2011, the course (JIMENEZ et al., 2011) presented how industry and academia have
been exploring alternative antialiasing approaches, sharing concepts and ideas. The main goal
of the course is to establish a conceptual link between them, identifying novelties and differ
ences. The course includes an overview of both research and industry filterbased antialiasing
techniques in games for all modern platforms.

For over a decade, supersample antialiasing (SSAA) andmultisample antialiasing (MSAA)
have been the goldstandard antialiasing solutions in games. However, these techniques are not
well suited for deferred shading or fixed environments like the seventh generation of consoles.
The original morphological antialiasing (MLAA) method led to an explosion of realtime anti
aliasing techniques that rival MSAA (JIMENEZ et al., 2011).

Morphological AntiAliasing (MLAA) algorithm belongs to a family of datadependent
filters allowing efficient antialiasing at a postprocessing step. The algorithm infers subpixel
coverage by estimating plausible silhouettes from a collection of axisaligned separation lines
that fall between perceptually different pixels (JIMENEZ et al., 2011).

The main idea of MSAA is that in areas of low edge curvature, samples outside of a
pixel can be used on the isolines of the image to reconstruct a pixel. The basic idea is to use
samples inside and outside of the pixel. The weight of the sample is determined by how much
the isoline intersects with the pixel (JIMENEZ et al., 2011).

The MLAA version developed by (JIMENEZ et al., 2011) detects borders (using color,
depth, normals, or instance id’s information) and then finds specific patterns. Antialiasing is
achieved by blending pixels in the borders intelligently. Practical Morphological AntiAliasing

Chapter 2. THEORY 30

(JIMENEZ et al., 2011) presents an optimized GPU adaptation.

HybridMorphological AntiAliasing presents an implementation ofMLAA for theXbox
360 where the edge detection and filtering states of the algorithm are performed on a GPU, and
the blend weight calculations are performed on CPUs (JIMENEZ et al., 2011).

Subpixel Reconstruction AntiAliasing (SRAA) treats aliasing by taking subpixel sam
ples to find edges while keeping the shading at 1 sample per pixel to guarantee good coherence
and minimal changes to the existing pipeline. In particular, SRAA requires an edge detector sim
ilar to Jiminez’s MLAA. It determines sample similarity to reconstruct the color of each sample.
Then, the samples get filtered using a box filter and can be sent to the postprocessing pipeline
(JIMENEZ et al., 2011).

The Fast approXimate AntiAliasing (FXAA) algorithm applies 2 or 4tap variable
length box filter 90 degrees to luma gradient, with an adjustment on filter length and direction
to help remove subpixel aliasing. It works as one fullscreen pixel shader pass, taking color as
input and writing color as output (JIMENEZ et al., 2011).

Distancetoedge AA (DEAA) simulates antialiasing by selective blurring. Different
from MLAA, the distancetoedge values are calculated with subpixel precision. The post
process blur can simulate subpixel effects that are not possible by simple inspection of a frame
buffer. However, DEAA is unable to provide antialiasing in several situations where MLAA
can (JIMENEZ et al., 2011).

The geometric postprocess antialiasing (GPAA) is proposed as an alternative approach
to address these problems. Geometric edge information is stored to a fullscreen render target
during the main rendering pass. In the end, the buffer is analyzed and resolved in a fullscreen
pass, similar in concept to how traditional MSAA works (JIMENEZ et al., 2011).

Directionally Localized AntiAliasing (DLAA) is a solution designed with simplicity. It
makes GPU and CPU friendly and allows efficient implementations on modern gaming consoles
such as the PlayStation 3 and Xbox 360. It is temporally stable and very effective, offering high
quality to performance ratio (JIMENEZ et al., 2011).

2.4.2 Conclusion

This subsection presented several related works that developed or reviewed antialiasing
methods. Most of them used the prefiltering approach, where the method runs within the render
process. Most of them have high execution time or high memory use as drawbacks, impacting
realtime applications performance considerably.

It has become evident that different approaches can be used to treat the aliasing problem.
While the first related works presented innovative methods, the course developed by (JIMENEZ
et al., 2011) makes a review of the main methods utilized at retail. They are SSAA, MSAA,
MLAA, SRAA, FXAA, DEAA, GPAA, and DLAA.

Chapter 2. THEORY 31

None of the related works utilized any approach similar to the proposed in this thesis.
Although, the absence of similar studies denotes its innovative potential. Moreover, there are
no established metrics for quality or performance. In most studies, the results are displayed to
the reader’s eye assessment, assigning them the task of examining the results subjectively. For
performance measurement, execution time and memory consumption are the primary metrics
used. Although, with these metrics, the results change according to the hardware used.

32

3 REPAIR: AN ANTIALIASING
METHOD

This chapter describes the operation of REPAIR antialiasing and its asymptotic anal
ysis. Section 3.1 approaches the steps related to digital image processing. The steps related to
statistics are approached in Section 3.2. Section 3.3 shows the rotation procedure of the spatial
filtering mask. Section 3.4 accomplishes the asymptotic analysis of the algorithm, and Section
3.5 presents the pseudocode.

The aliasing problem occurs during the raster process of digital images when colors need
to be placed in the discrete regions of the pixels. Aliasing has no definitive solution. Usually, it
is reduced by supersampling the image. However, it can have a high computing cost.

Therefore, this work purpose the Rotated Spatial Filtering (REPAIR) AntiAliasing
method aims to smooth aliasing effects without the need for a supersampled image or interfer
ing in the raster process. It is a postfiltering technique and must treat with low computational
complexity.

The REPAIR antialiasing method is divided into five steps: grayscale conversion, sharp
ening filter with Sobel gradient, threshold cleaning, slope angle estimation with simple linear
regression, and rotated smoothing filter. The steps are outlined in the following section, sequen
tially and divided by knowledge area.

First, to perform the REPAIR AA, it is necessary to recognize the edges, where aliasing
usually appears. After that, the tangent angle of each edge pixel is computed. These angles are
used to rotate the filter mask, used by correlation. Finally, the smoothing filter is applied to the
selected regions, blurring the edges.

The method utilizes knowledge from digital image processing and statics fields. Section
3.1 approaches the steps related to the digital image processing field; section 3.2 approaches
the steps related to the statistics field; section 3.3 explains the process to rotate the smoothing
spatial filter; section 3.5 shows the pseudocode of REPAIR AA and the asymptotic analysis.

3.1 Image Processing

REPAIR method aims to treat aliasing selectively in regions with abrupt transitions of
colors. These regions are identified through the pixel intensity obtained by grayscale conversion.
For this, the Y channel of the Y IQ color system can be used, as presented in Equation (2.1).
Figure 3.1 shows the grayscale conversion result.

Chapter 3. REPAIR: AN ANTIALIASING METHOD 33

Figure 3.1 – Grayscale conversion example on an image containing random geometric shapes
created with OpenGL.

(a) Color image. (b) Grayscale image.

Source: Own authoring

In the second step, a sharpening spatial filter is applied to the grayscale image. This
type of spatial filter tends to highlight the edge regions of the objects and erase the background,
resulting in a black image with grayish lines. The mask of Sobel gradient that has been utilized
in this step is showed in Figure 2.9. Then, the result of this process is illustrated in Figure 3.2.

Figure 3.2 – Sharpening filtering example with Sobel gradient applied on the grayscale image.

(a) Grayscale image. (b) Filtered image with Sobel gradient.

Source: Own authoring

3.2 Statistics

The filter applied in the second step highlights the borders. However, it can also highlight
noise and unimportant regions without aliasing, resulting in a polluted image. In the third step,
a threshold is applied to eliminate a part of the greyish pixels to clean the filtered image.

Chapter 3. REPAIR: AN ANTIALIASING METHOD 34

The threshold T is based on the mean µ of the nonblack pixels values zi,j . A weight κ
multiplies the population variance σ to adjust the threshold. The value of κ can be positive or
negative, determining the number of pixels that must be eliminated. Low values of κ tend to
preserve the image, while high values tend to erase all pixels. Finally, the pixels with intensity
less than T are removed from the image, remaining those with higher intensities.

Being n the number of nonblack pixel, the threshold T of a w × h size image is given
by

T = µ+ κσ (3.1)

with

µ =
1

n

w∑
i=1

h∑
j=1

zi,j

and

σ2 =
1

n

w∑
i=1

h∑
j=1

(zi,j − µ)2.

The result from the third step is an image with thinner lines and less noise but still
preserving the edge regions. The remaining nonblack pixels are the selected regions where the
smoothing filter must be applied. It is shown in Figure 3.3.

Figure 3.3 – Threshold applied on the filtered image with sharpening filter.

(a) Filtered image with Sobel gradient. (b) Image with threshold applied.

Source: Own authoring

The direction of each edge pixelmust be known to rotate the spatial filter that will smooth
the aliasing. The fourth step utilizes simple linear regression to estimate the tangent angle of
each edge pixel. Figure 3.4 illustrates the direction of the center pixel of a 5× 5 neighborhood,
highlighted as a red line.

Chapter 3. REPAIR: AN ANTIALIASING METHOD 35

Figure 3.4 – The red line represents the estimated slope angle of the pixel marked with the red
dot. The estimate is based on the square patch shown in (b).

(a) Direction of the marked pixel. (b) Patch of 5× 5 size

Source: Own authoring

The neighborhood around each selected pixel is assessed to estimate the slope. Figure
3.5 shows a 5× 5 patch with pixels values zi,j . Figure 3.5 show a generic neighborhood, where
wi and hi are the means weighted by position of the columns and lines, respectively.

Figure 3.5 – Patch of pixels zi,j used to estimate its direction.wi and hi are the means from each
column and line, respectively.

Source: Own authoring.

Chapter 3. REPAIR: AN ANTIALIASING METHOD 36

Being a = (n− 1)/2 the mask center, the Equation (3.2) computes the wi and hi values.

wi =

a∑
j=−a

zi,j · j

a∑
j=−a

zi,j

hi =

a∑
j=−a

zj,i · j

a∑
j=−a

zj,i

(3.2)

if
∑a

j=−a zi,j , then wi = 0, and if
∑a

j=−a zj,i, then hi = 0.

Then, two simple linear regression models are built to fit wi and hi means. One linear
regression will fit the vertical distribution of pixels, while the other will fit the horizontal distri
bution of pixels. Since the problem is is too complex to handle, the estimates are used to facilitate
the computation.

Because the intensity values must be estimated from the patch coordinates, the means
wi and hi the response variables y, and the coordinates being the regressor variables xi. Table
3.1 arranges the pairs of data to build the linear regression models.

Table 3.1 – Pairs of data to the linear regression model construction.

i yi xi
1 h−2 −2
2 h−1 −1
3 h0 0
4 h1 1
5 h2 2

i yi xi
1 w−2 −2
2 w−1 −1
3 w0 0
2 w1 1
3 w2 2

Source: Own authoring.

It is common to have pixels replication in the neighborhood since the application works
on images. If the intensity values are similar, then the wi and hi values shall be too. Equation
(3.3) presents the two linear regression models.

wi = α0 + α1xi + εwi

hi = β0 + β1xi + εhi
(3.3)

being α0 and β0 the intercepts, α1 and β1 are the slope. wi and h1 are the response
variables and xi is the regressor variable. εwi and εhi are the errors. The function is parameterized
by xi, which is the same in both equations.

Chapter 3. REPAIR: AN ANTIALIASING METHOD 37

Because α1 and β1 slopes represents the two separated axes, the equations wi and hi are
parameterized by xi to find the resulting slope that represents the pixel direction, illustrated by
the red line in Figure 3.4. Because the edges are diffuse, the resulting function must lean to one
of the axes. Therefore, the model must match the edge direction.

Thus,

wi = α0 + α1xi + εwi

xi =
wi − α0 − εwi

α1

(3.4)

Replacing on hi

hi = β0 + β1xi + εhi

= β0 + β1
wi − α0 − εwi

α1

+ εhi

= β0 +
β1

α1

wi −
β1

α1
α0 −

β1

α1

εwi + εhi

(3.5)

where hi is the regressor variable, β1

α1
is the resulting slope angle, β0 is constant, and the errors

εwi + εhi are discarded. The slope angle represents the estimated tangent angle in the region
assessed. Therefore,

tan θ =
β1

α1
(3.6)

Finally, the arctan θ is the slope angle that indicates the direction of the edges. Such angle
must be utilized in the spatial filter rotation.

3.3 Mask Rotation

In the fifth step, the average filter is utilized to smooth the edges of the original color
image. This lowpass filter is appropriate because it reduces abrupt transitions and diminishes
details blurring the region where it is executed.

According to (GONZALEZ; WOODS, 2008), the average filter is an isotropic filter that
applies equally well independent of the direction. However, due to spatial filtering character
istics, is it isotropic in limited angles, steeping in 45° angles. Thus, this filter will be rotated
to match each edge pixel direction to improve the smoothing effect quality. Figure 3.6 shows
the rotation mechanics, where the big matrix represents the image pixels, and the red matrix
represents the filter terms. Each term will hit pieces of different pixels.

Chapter 3. REPAIR: AN ANTIALIASING METHOD 38

Figure 3.6 – Rotation mechanics with a filter mask 3× 3

Source: Own authorship.

After rotating the mask, its pixels have new coordinates. Equation (3.7) is used to com
pute the new coordinates of the rotated mask.

w′ = w · cos θ − h · sin θ

h′ = w · sin θ + h · cos θ
(3.7)

with w′, h′ ∈ R. The rotation will result in real numbers coordinates. Therefore, a modi
fication of bilinear interpolation estimates the color of f(w′, h′) sincew′ and h′ are real numbers
and do not fit in the discrete representation of pixels coordinates.

To interpolate the point f(w′, h′), its four nearest pixels are needed. These pixels are
obtained using the floor and ceiling values of w′ and h′, which round them to match integer
pixels coordinates as illustrated by Figure 3.7.

Chapter 3. REPAIR: AN ANTIALIASING METHOD 39

Figure 3.7 – Use of bilinear interpolation to estimate the center dot intensity based on the four
nearest pixels.

Source: Own authorship.

Calling the four nearest pixels a, b, c and d, its values are given by Equation (3.8)

a = f(⌊w′⌋, ⌊h′⌋)

b = f(⌈w′⌉, ⌊h′⌋)

c = f(⌊w′⌋, ⌈h′⌉)

d = f(⌈w′⌉, ⌈h′⌉)

(3.8)

Equation (3.9) computes the value of f(w′, h′).

f1 = a+ (h′ − ⌊h′⌋) · (b− a)

f2 = b+ (h′ − ⌊h′⌋) · (d− c)

f(w′, h′) = f1 + (w′ − ⌊w′⌋) · (f2 − f1)

(3.9)

For example, to estimate the color of a pixel f(10.3, 30, 8), the nearest pixel coordinates
are given by the following floor and ceiling values

⌊w′⌋ = ⌊10.3⌋ = 10

⌈w′⌉ = ⌈10.3⌉ = 11

⌊h′⌋ = ⌊30.8⌋ = 30

⌈w′⌉ = ⌈30.8⌉ = 31

(3.10)

Chapter 3. REPAIR: AN ANTIALIASING METHOD 40

Therefore,

a = f(10, 30)

b = f(11, 30)

c = f(10, 31)

d = f(11, 31).

(3.11)

The bilinear interpolation will be executed one time for each pixel in the neighborhood,
and this process will be repeated for each selected edge pixel according to correlation equation
(2.2). The pixel value is the interpolated f(w′, h′), and the mask is the average mask in Figure
2.5. The new pixels result in the smoothed image with the rotated spatial filter, finishing the
REPAIR AA treatment. Figure 3.8 shows the smoothing result.

Figure 3.8 – (a) Original image (b) Image treated with REPAIR antialiasing (c) Zoom in the
original image (d) Zoom in the treated image.

(a) (b)

(c) (d)

Source: Own authoring

The rotation process smooths the edges in an adequate direction, blurring more accu
rately and preserving the scene details. Figure 3.9 shows the difference between the rotated spa
tial filtering and standard spatial filtering. It is visible that the rotated filter smooths the edges
with less blurring, reducing the aliasing but still keeping the edges well marked.

Chapter 3. REPAIR: AN ANTIALIASING METHOD 41

Figure 3.9 – Comparison between two images treated with non rotated and rotated spatial filter
ing.

(a) Standard smoothing filter. (b) Rotated smoothing filter.

Source: Own authoring

3.4 Asymptotic Analysis

The REPAIR AA pseudocode describes the method operation. It is shown in the Algo
rithm 1. The grayscale step is executed at line 1, the sharpening filter at line 2, and the threshold
step at line 3. Between lines 15 and 29, there are the main loops, which walk through all im
age pixels. The slope angle step is at line 25, and the rotated smoothing filter is at line 26. The
diagram in Figure 3.10 summarizes the algorithm steps.

Chapter 3. REPAIR: AN ANTIALIASING METHOD 42

Figure 3.10 – Algorithm’s workflow.

Source: Own authorship.

Assuming that w and h are, respectively, the width and height of the source image and
that m ×m is the mask size of the spatial filter, n = w · h is the number of the source image
pixels, whilem2 is the number of filter terms.

In the first step, the target image is converted to grayscale. For that, Equation (2.1) is
computed for each pixel. Since Equation (2.1) executes in constant time O(1), and it will be
executed n times, the grayscale function execution time is O(n). The memory use is also O(n),
because a new image is stored.

In the second step, a Sobel gradient is applied to highlight the edges of the scene objects.
Because Sobel gradient uses two filter masks, the correlation (Equation (2.2)) is executed two
times for each pixel, adding the results in the end. Since the Equation (2.2) executes in time
O(m2), and it executed for all n image pixels, the resulting complexity is time O(2nm2)) and
memory O(n).

In the third step, a threshold is applied to reduce noise e discard nonrelevant regions. It
is described in Algorithm 2. In lines 2 and 3, the main loops walk in all image pixels, resulting
in time complexity O(n) and space complexity O(1).

The loops in lines 4 and 5 apply the threshold to segment the image, inspecting all pixels.
Thus, it results in time O(n) and memory O(1), since no data is stored. The main loops in lines
15 and 16 also walk through all n pixels, and the inner loops inspect the neighborhood of size
m × m. Inside the main loop, the slope angle and the bilinear interpolation are computed for
each selected pixel.

Chapter 3. REPAIR: AN ANTIALIASING METHOD 43

In the fourth step, the algorithm estimates the slope angle of each pixel from the edge re
gions using simple linear regression. Its pseudocode is described in Algorithm 3. This function
is applied to the selected patchesm×m to find θ slope angle, and his main loop in line 3 walks
through the patch. All image pixels will be selected as edge pixels in the worstcase scenario,
resulting in time complexity O(nm2) and space complexity O(nm2).

With the edges pixels found and their slope angle estimated, the lowpass spatial filter
is rotated and applied to these regions at the color image. Bilinear interpolation in Algorithm 4
is used to estimate the values of the low pass filter of the rotated mask (for each color channel).
This function will be executed in each selected pixel to interpolate it. The worstcase scenario
takes time O(nm2) and space O(n).

Overall, the algorithm will process every pixel of the image in the worstcase scenario.
The resulting time complexity is O(n · m2) and space complexity O(n + m2). Although, this
scenario hardly will be reached since most parts of the images usually are not edge regions.

Knowing that the mask size m will usually be small, not surpassing 9, it can be treated
as a constant value because it will have little impact on the execution time. Therefore, the time
complexity of the REPAIR AntiAliasing method can be considered asO(n) and the space com
plexity also O(n).

3.5 Algorithms

Algorithm 1 presents the pseudocode of the REPAIR method. It receives a color image,
the filter size, and the threshold weight. Its output is the processed image with antialiasing. The
algorithm follows the workflow in Figure 3.10.

Algorithm 1: REPAIR AntiAliasing PseudoCode
Input: Color image: img, Filter size: n, Threshold weight: tw
Result: AntiAliased image

1 bwImg ← grayscale(img)

2 bwImg ← sobelGradientF ilter(bwImg)

3 threshold← meanThreshold(bwImg, tw)

4 for i← 0 to bwIimg.Height() do
5 for j ← 0 to bwImg.Width() do
6 if bwImg(i, j) < threshold then
7 bwImg(i, j)← 0

8 end
9 end
10 end

Chapter 3. REPAIR: AN ANTIALIASING METHOD 44

11 patch n×n ← ∅
12 rgbPatchn×n×3 ← ∅
13 blurMaskn×n ← averageF ilter (n)
14 dstImg ← emptyColorImage()

15 for i← 0 to img.Height() do
16 for j ← 0 to img.Width() do
17 if bwImg(i, j) ̸= 0 then
18 a← (n− 1)/2

19 for k ← −a to a do
20 for l← −a to a do
21 patch(k, l)← bwImg(i+ k, j + l)

22 rgbPatch(k, l)← img(i+ k, j + l)

23 θ ← slopeAngle(patch)

24 dstImg(i, j)← rotatedBilinear(rgbPatch, blurMask, θ)

25 return dstImg

Algorithm 2 calculates a threshold value based on the mean of the pixel intensities of
the input image. The threshold is adjusted by a weight κ. This function is called at line 3 of the
REPAIR antialiasing algorithm, and its output is an integer value.

Chapter 3. REPAIR: AN ANTIALIASING METHOD 45

Algorithm 2:Mean Threshold Function PseudoCode
Input: Black & white image: img, Threshold weight: κ
Result: Threshold value

1 n, s, s2← 0

2 for i← 0 to img.Width() do
3 for j ← 0 to img.Height() do
4 if img(i, j) ̸= 0 then
5 s← s+ img(i, j)

6 s2← s2 + img(i, j)2

7 n← n+ 1

8 end
9 end
10 end

11 µ← s

n
12 σ2 ← s2− (2 · µ · s) + µ2

13 t← µ− κ ∗ σ

14 return t

Algorithm 3 estimates the pixel direction using simple linear regression in Equation (3.5).
Its input is a neighborhood of pixels, and its output is a real value θ indicating the slope angle
of the pixel. This function is called at line 25 of the REPAIR antialiasing algorithm.

Algorithm 3: Slope Angle Function PseudoCode
Input: Patch n× n from B&W image
Result: Slope angle

1 wV ectorn, hV ectorn ← ∅
2 a← (n− 1)/2

3 for i← −a to a do
4 wV ector(i)← weightedMeanOfColumn(i)

5 hV ector(i)← weightedMeanOfLine(i)

6 end

7 α1 = computeSlopeCoeff(wV ector)

8 β1 = computeSlopeCoeff(hV ector)

9 θ ← arctan

(
β1

α1

)
10 return θ

Chapter 3. REPAIR: AN ANTIALIASING METHOD 46

Algorithm 4 estimates the intensity of a pixel with real coordinates and applies a spatial
filter to it. Its input is a neighborhood of pixels and a spatial filter, and its output is an interpolated
pixel with a filter already applied to it. Bilinear interpolation is used to perform the task, and
correlation is applied at line 14, Equation (2.2). This function is called at line 26 of the REPAIR
antialiasing algorithm.

Algorithm 4: Rotated Bilinear Interpolation Function PseudoCode
Input: Patch n× n from color image, smoothing filtermask m×m, slope angle: θ
Result: Resulting pixel

1 result← 0

2 a = (n− 1)/2

3 for w ← −a to a do
4 for h← −a to a do
5 w′ ← w · cos θ − h · sin θ
6 h′ ← w · sin θ + h · cos θ

7 a← patch(⌊w′⌋, ⌊h′⌋)
8 b← patch(⌈w′⌉, ⌊h′⌋)
9 c← patch(⌊w′⌋, ⌈h′⌉)
10 d← patch(⌈w′⌉, ⌈h′⌉)

11 f1 ← a+ (h′ − ⌊h′⌋) · (b− a)

12 f2 ← b+ (h′ − ⌊h′⌋) · (d− c)

13 f(w′, h′)← f1 + (w′ − ⌊w′⌋) · (f2 − f1)

14 result← result+ patch(w′, h′) ·mask(w, h)

15 end
16 end
17 return round(result)

47

4 RESULTS AND DISCUSSIONS

This chapter presents and evaluates the obtained results during the several tests per
formed in the method’s development. The preliminary results were obtained from a software
written in C++ using OpenGL Application Programming Interface (API). It displays diverse ge
ometric shapes in front of a gradient background, resulting in the scene shown in Figure 4.1a. The
software reads OpenGL’s framebuffer and processes the image. Then, it overwrites the frame
buffer to show the processed image on the screen. Figure 4.1 shows a comparison of different
smoothing filters applied to Figure 3.1a.

Figure 4.1 – Comparison between different smoothing filter masks.

(a) Original image

(b) Gaussian blur mask 5× 5 (c) Average mask 3× 3

Chapter 4. RESULTS AND DISCUSSIONS 48

(d) Average mask 5× 5 (e) Average mask 7× 7

Source: Own authorship.

Oversized masks add more blur to the image, reducing the details of objects likewise
aliasing. The ideal setting reduces aliasing by inserting as slight a blur as possible, such as
Gaussian Blur mask 5× 5 or average mask 3× 3.

Figure 4.2 shows what happens with different threshold weights. Low values tend not to
modify the filtered image, blurring more pixels than necessary, while high values erase all lines,
leaving too many untreated regions.

Figure 4.2 – Comparison between different threshold weights κ.

(a) κ = −2.0. (b) κ = −1.0.

Chapter 4. RESULTS AND DISCUSSIONS 49

(c) κ = −0.5. (d) κ = 0.5.

(e) κ = 1.0. (f) κ = 2.0.

Source: Own authorship.

Figure 4.3 illustrates the slope angle computation, coloring the pixels according to their
inclination. The pixels with direction closer to 0° are blue, while pixels closer to 90° are red,
making visible the edges directions. Notice that 0° and 90° will provide the same result since
the smoothing filters shown in Subsection 2.2 are isotropic. Also, the filter might assess regions
with similar pixels intensities inside the line in regions with thicker lines, resulting in angles
close to 0°.

Chapter 4. RESULTS AND DISCUSSIONS 50

Figure 4.3 – Heatmap representing the direction of the objects edges. As the slope angle is closer
90°, more close to red the pixel is plotted.

Source: Own autorship.

Blender was utilized to produce more realistic scenes to assess the REPAIR antialiasing
results. Blender is a free and opensource software for 3D modeling. It supports the entire 3D
pipeline, allowingmodeling, rigging, animation, simulation, rendering, compositing, andmotion
tracking (Blender Foundation, 2020a).

The rendering of the scenes was made with Eevee, a fast renderer available on Blender.
The application was modified to process the rendered files from Blender. It was configured to
render with only one sample, without antialiasing or any features that might smooth the edges.
Because aliasing is automatically reduced when multisampling is used, these cares are taken in
the renderer settings.

In order to display the details of the resulting image, they need to be augmented. To pre
serve the original characteristics of the images, the nearest neighbor zoom, also known as pixel
replication, is used. This method replicates the pixels without modifying their values, making
it possible to highlight the aliasing to the viewer without any improvement in the scene. The
following sections present several images treated with REPAIR antialiasing.

4.1 Stanforfd 3D Scanning Repository

The Stanford 3D Scanning Repository is a repository containing scanned 3D models.
The scenes are presented on a checkered floor and a solid white background illuminated by

71

5 CONCLUSION

In this study, a new antialiasing method called REPAIR AntiAliasing was proposed. It
is a postfiltering antialiasing treatment that aims to reduce the jagged appearance that affects
object borders. The aliasing problem occurs during the render process of a graphic scene, and
although there is no definitive solution, it can be diminished (GONZALEZ; WOODS, 2009).
The REPAIR AntiAliasing is divided into five steps: grayscale conversion, sharpening spatial
filtering, threshold application, slope angle estimation, and rotated spatial filtering.

Firstly, the grayscale conversion is based on the YIQ color system because it takes advan
tage of human eye color response to produce good results. Then, the Sobel gradient is used for
sharpening spatial filtering to highlight the image edges, where aliasing usually occurs. Later,
the threshold is applied to the filtered image to clean noise and unimportant regions. Finally,
the Gaussian blur, lowpass spatial filtering, is applied to blur the jagged edges. The smoothing
filter is rotated to match the edge inclination, improving the smoothing quality.

The Related Works Section shows that most antialiasing techniques demand supersam
pling the image or store buffers, consuming computational resources and impacting the appli
cation’s performance. Some methods work in the render pipeline to achieve the results. The
proposed method aims to be simple and costefficient. With execution time O(n) and memory
consumption also O(n), the REPAIR method reduces aliasing efficiently, demanding low pro
cessing cost.

The tests were performed on an OpenGL application developed in C++. The primary
strategy was to read the OpenGL framebuffer, retrieve the rendered image, process it with RE
PAIR AntiAliasing, and then overwrite the framebuffer with the treated image to be displayed.

For testing purposes, an alternative version of the software was created to process image
files. Blender is 3D modeling software used to build more complex scenes with 3D models,
textures, shadows, and other graphic elements. Since REPAIR AntiAliasing is a postfiltering
method, its operation was not changed.

The REPAIR antialiasing has shown effectiveness in improving the quality of all tested
images. They had their edges smoothed and their details preserved. The method works on all
edges, shadows, and textures. If there is an abrupt transition of colors, the method must treat the
region. Furthermore, the scene illumination is not affected by the method. Overall, the results
are satisfactory.

The algorithm’s efficiency comes from its selectivity to treat only regions where alias
ing is expected to occur, ignoring the others. The Gaussian filter has shown better results than
others filters due to its weighing system, keeping the colors closer to the center pixel. Moreover,
the filter rotation process improves the smoothing quality since it is applied in the same edge

Chapter 5. CONCLUSION 72

direction, preventing excessive blur. Thus, REPAIR antialiasing executes in the right places
and the right direction.

It was impossible to compare the REPAIR method with other antialiasing methods be
cause of the scarcity of documentation. Most of them are embedded in proprietary solutions.
Hence, there is no access to its implementations, and there is no standard metric to evaluate
them.

5.1 Future Work

The REPAIR method is currently implemented in standard C++, executing on Central
Processing Unit (CPU), which is inappropriate for image processing. So, the performance can
be increased by parallelizing the solution.

As future work, the algorithm can be ported to programming languages such as CUDA
or OpenCL to execute on Graphics Processing Units (GPUs) since they are appropriate devices
to perform image processing. Another alternative is to develop a custom solution on Field Pro
grammable Gate Array (FPGA), a platform for digital circuits implementation. The ability to
implement the algorithm on hardware also can increase its performance significantly.

Furthermore, a hybrid version of the algorithm can be developed using Hybrid Compu
tation concepts. The algorithms tasks can be separated into different devices such as CPU, GPU,
and FPGA. This solution can bring highly efficient parallelism to solve the problem fast.

Moreover, machine learning techniques can be applied to improve the smoothing fil
tering. A custom smoothing filter can be created for each filtered pixel, weighting its terms
according to each neighborhood’s intensities.

73

Bibliography

ALVES, R. F. M. Aplicação de Antialiasing em Cenas Gráficas Utilizando Filtragem Espacial
de Imagens. 46 p. Monografia (Trabalho de Conclusão de Curso) — Universidade Federal
Rural do SemiÁrido, Mossoró, RN, 2018.

ANGEL, E.; SHREINER, D. Interactive Computer Graphics: A Top Down Approach with
WebGL. 7. ed. Upper Saddle River, New Jersey, USA: Pearson, 2015.

AZEVEDO, E.; CONCI, A. Computação Gráfica: Teoria e Prática. 1. ed. Rio de Janeiro, RJ:
Campus, 2003.

BARRINGER, R.; AKENINEMOLLER, T. A4: Asynchronous adaptive antialiasing using
shared memory. ACM Transactions on Graphics, v. 32, 2013. ISSN 07300301. AntiAliasing
que utiliza memória compartilhada em CPU e GPU. Cited at page 27.

BARROSO, L. C. et al. Cálculo Numérico (Com Aplicações). 2. ed. São Paulo, SP: Harbra
Ltda., 1987.

Blender Foundation. Blender. 2020. Version 2.91. Disponível em: <https://www.blender.org/>.
Cited 2 times at pages 14 and 50.

Blender Foundation. Blender Demo Files. 2020. Version 2.91. Disponível em: <https:
//www.blender.org/download/demofiles/>. Cited 2 times at pages 7 and 69.

BlenderKit. Online BlenderKit library. 2017. Version 1.0.32. Disponível em: <https:
//www.blenderkit.com/>. Cited 16 times at pages 7, 14, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,
65, 66, 67, and 68.

BORJAS, S. D. M. Cálculo Numérico. 1. ed. Mossoró, RN: EdUFERSA, 2013.

BURGER, W.; BURGE, M. J. Digital Image Processing: An Algorithmic Introduction Using
Java. 2. ed. London, UK: Springer, 2016.

CORMEN, T. H. et al. Introduction to Algorithms. 3. ed. Massachusetts, USA: The MIT Press,
2009.

CRASSIN, C. et al. Aggregate gbuffer antialiasing. p. 109–119, 2013. Aplicado na
rasterização dos pixels.

Utiliza multisampling na rasterização para computar valores
agregados. Cited at page 27.

ENDERTON, E. et al. Accumulative antialiasing. ACM SIGGRAPH 2015 Talks, SIGGRAPH
2015, 2015. Cited at page 27.

GONZALEZ, R. C.; WOODS, R. E. Digital Image Processing. 3. ed. New Jersey, USA:
Pearson, 2008. Cited 9 times at pages 12, 16, 17, 18, 19, 20, 21, 22, and 37.

GONZALEZ, R. C.; WOODS, R. E. Processamento Digital de Imagens. 3. ed. São Paulo,
Brasil: Pearson, 2009. Cited 2 times at pages 12 and 71.

HEARN, D.; BAKER, M. P. Computer Graphics: C Version. 2. ed. New Jersey, USA: Prentice
Hall, 1997. Cited at page 12.

https://www.blender.org/
https://www.blender.org/download/demo-files/
https://www.blender.org/download/demo-files/
https://www.blenderkit.com/
https://www.blenderkit.com/

Bibliography 74

HEARN, D. D.; BAKER, M. P.; CARITHERS, W. Computer Graphics with OpenGL. 4. ed.
Harlow, United Kingdom: Pearson, 2014.

HUGHES, J. F. et al. Computer Graphics: Principles and Practice. 3. ed. Ohio, USA: Pearson,
2014. Cited 2 times at pages 12 and 13.

IOURCHA, K.; YANG, J. C.; POMIANOWSKI, A. A directionally adaptive edge antialiasing
filter. Proceedings of the HPG 2009: Conference on HighPerformance Graphics 2009, v. 1, p.
127–134, 2009. Cited at page 26.

JIMENEZ, J. et al. Filtering approaches for realtime antialiasing. ACM SIGGRAPH 2011
Courses, SIGGRAPH’11, 2011. This one! Cited 2 times at pages 29 and 30.

KIRK, D. B.; HWU, W. mei W. Programming Massively Parallel Processors: A Handson
Approach. 2. ed. Waltham, MA, USA: Morgan Kaufman, 2013. Cited at page 12.

KVETNY, R. N.; KOSTROVA, C.; BOGATCH, I. Antialiasing algorithms based on
selfsimilar multitudes. Selected Papers from the International Conference on Optoelectronic
Information Technologies, v. 4425, p. 83, 2001. ISSN 0277786X. Cited at page 26.

LEE, J. et al. Selective multisample antialiasing for mobile vector graphics. 2016 IEEE
International Conference on Consumer Electronics, ICCE 2016, IEEE, p. 174–175, 2016.
Cited at page 28.

LIU, S.; LI, L. A fast antialiased rendering line algorithm for real coordinate. Proceedings
 2018 International Conference on Robots and Intelligent System, ICRIS 2018, p. 464–467,
2018. Cited at page 28.

LUO, D.; ZHANG, J. The #filter antialiasing based on subpixel continuous edges.
Mathematics, v. 8, 2020. ISSN 22277390. Cited at page 29.

MATHWORKS. rgb2ntsc: Convert RGB color values to NTSC color space. Image Processing
Toolbox Documentation. <https://www.mathworks.com/help/images/ref/rgb2ntsc.html>.
Acessed: 20210713. Cited at page 16.

MONTGOMERY, D. C.; PECK, E. A.; VINING, G. G. Introduction to Linear Regression
Analysis. 5. ed. New Jersey, USA: Wiley, 2012. Cited 3 times at pages 23, 24, and 25.

MONTGOMERY, D. C.; RUNGER, G. C. Applied Statistics and Probability for Engineers. 6.
ed. Arizona, USA: Wiley, 2014. Cited 3 times at pages 18, 22, and 23.

NAH, J. ho et al. Axaa: Adaptive approximate antialiasing. p. 1–2, 2009. Cited at page 26.

PHILLIPS, D. Image Processing in C. 2. ed. Kansas, USA: R & D Publications, 2000.

RAJARAPOLLU, P. R.; MANKAR, V. R. Design and analysis of antialiasing filters for
rendering of graphical entities. ACM, 03 2016. Cited at page 27.

RUGGIERO, M. A. G.; LOPES, V. L. da R. Cálculo Numérico: Aspectos Teóricos e
Computacionais. 2. ed. São Paulo, SP: Pearson, 1996.

SALVI, M.; VIDIMCE, K. Surface based antialiasing. Proceedings I3D 2012: ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games, v. 1, p. 159–164, 2012. Cited
at page 27.

https://www.mathworks.com/help/images/ref/rgb2ntsc.html

Bibliography 75

SCHAULAND, S.; VELTEN, J.; KUMMERT, A. A new antialiasing approach for improved
motionbased object detection using linear filters. IEEE Intelligent Vehicles Symposium,
Proceedings, IEEE, p. 915–920, 2010. Cited at page 26.

SCHOLLMEYER, A.; FROEHLICH, B. Efficient and antialiased trimming for rendering
large nurbs models. IEEE Transactions on Visualization and Computer Graphics, IEEE, v. 25,
p. 1489–1498, 2019. ISSN 19410506. Cited at page 28.

SOUZA, L. C. de. Agrupamento e Regressão Linear de Dados Simbólicos Intervalares
Baseados em Novas Representações. Tese (Doutorado) — Universidade Federal de
Pernambuco, Recife, PE, 3 2016. Cited at page 22.

Stanford University. The Stanford 3D Scanning Repository. 2014. Disponível em:
<http://graphics.stanford.edu/data/3Dscanrep/>. Cited 5 times at pages 6, 7, 51, 52,
and 54.

SUNG, M.; CHOI, S. Selective antialiasing for virtual reality based on saliency map.
Proceedings 2017 International Symposium on Ubiquitous Virtual Reality, ISUVR 2017,
IEEE, p. 16–19, 2017. Cited at page 28.

Swan II, J. E. et al. An antialiasing technique for splatting. Cited at page 26.

WANG, Y. et al. Decoupled coverage antialiasing. Proceedings High Performance Graphics
2015, p. 33–42, 2015. Cited at page 27.

WIERINGA, R. J. Design Science Methodology: for Information Systems and Software
Engineering. 1. ed. Enschede, Netherlands: Springer, 2014.

XIAOLIANGI, M. et al. Implementation of dynamic antialiased shadow algorithm in 3d
scene. p. 1735–1737, 2007. Cited at page 26.

ZHAO, C. et al. Applications of a deep learning method for antialiasing and superresolution
in mri. Magnetic Resonance Imaging, Elsevier, v. 64, p. 132–141, 2019. ISSN 18735894.
Disponível em: <https://doi.org/10.1016/j.mri.2019.05.038>. Cited at page 28.

http://graphics.stanford.edu/data/3Dscanrep/
https://doi.org/10.1016/j.mri.2019.05.038

	Title page
	Approval
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	INTRODUCTION
	Objectives
	Research Methodology
	Outline

	THEORY
	YIQ Color System
	Spatial Filtering
	Simple Linear Regression
	Related Work
	Real Time Anti-Aliasing
	Conclusion

	REPAIR: AN ANTI-ALIASING METHOD
	Image Processing
	Statistics
	Mask Rotation
	Asymptotic Analysis
	Algorithms

	RESULTS AND DISCUSSIONS
	Stanforfd 3D Scanning Repository
	BlenderKit
	Blender Demo

	CONCLUSION
	Future Work

	Bibliography

